Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Aziz Alaoui Tahiri, ${ }^{\text {a }}$ Rachid Ouarsal, ${ }^{\text {a }}$ Mohammed Lachkar, ${ }^{\text {a }}$ Peter Y. Zavalij ${ }^{\text {b }}$ and Brahim El Bali ${ }^{\text {a }}$

${ }^{\text {a }}$ Département de Chimie, Faculté des Sciences Dhar Mehraz, BP 1796 Atlas 30003, Fès, Morocco, and ${ }^{\mathbf{b}}$ Institute for Materials Research and Department of Chemistry, State University of New York at Binghamton, NY 13902-6000, USA

Correspondence e-mail:
belbali@eudoramail.com

Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{P}-\mathrm{O})=0.002 \AA$
R factor $=0.037$
$w R$ factor $=0.063$
Data-to-parameter ratio $=14.8$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

Dipotassium manganese(II) bis(dihydrogendiphosphate) dihydrate, $\mathrm{K}_{2} \mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{P}_{2} \mathrm{O}_{7}\right)_{2} \cdot \mathbf{2} \mathrm{H}_{2} \mathrm{O}$

The framework of $\mathrm{K}_{2} \mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{P}_{2} \mathrm{O}_{7}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ consists of metallate layers linked by $\mathrm{O}-\mathrm{P}-\mathrm{O}$ bridges and weak hydrogen bridging bonds. Mn sites have an octahedral coordination by two bidentate $\left[\mathrm{H}_{2} \mathrm{P}_{2} \mathrm{O}_{7}\right]^{2-}$ anions and two water molecules.

Comment

Bibliographic data on acidic metal pyrophosphates and their applications have been widely discussed in previous papers published by our research group (Alaoui et al., 2002, 2003). The present work is a continuation of our investigations of the series $(A, T)_{x}\left(\mathrm{H}_{2} \mathrm{P}_{2} \mathrm{O}_{7}\right)_{y} \cdot z \mathrm{H}_{2} \mathrm{O}(A=$ alkali metal and $T=$ transition metal). We report here the synthesis and crystal structure of $\mathrm{K}_{2} \mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{P}_{2} \mathrm{O}_{7}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$.

In the structure of the title compound, potassium polyhedra share an edge to form dimers $\left[\mathrm{K}_{2} \mathrm{O}_{13}\right]$. These latter are linked by $\mathrm{Mn} \cdots \mathrm{O}$ interactions as they share a face with $\left[\mathrm{MnO}_{6}\right]$. This results in a metallate layer, parallel to (010). Two such layers are linked by $\mathrm{O}-\mathrm{P}-\mathrm{O}$ bridges from $\left[\mathrm{H}_{2} \mathrm{P}_{2} \mathrm{O}_{7}\right]$ moieties stacked in a parallel phosphate layer by weak bridging hydrogen bonds. Fig. 1 represents a perspective view of the structure.

Potassium occupies two kind of sites in the structure, one with seven- and the other with eightfold coordination. Average K $\cdots \mathrm{O}$ distances in $\left[\mathrm{K1O}_{8}\right]$ and $\left[\mathrm{K}_{2} \mathrm{O}_{7}\right]$ are 2.953 (2) and 2.859 (2) \AA, respectively. These values can be compared to $2.959 \AA$ in $\mathrm{K}_{2} \mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{P}_{2} \mathrm{O}_{7}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (Alaoui et al., 2003) or $2.908 \AA$ in $\mathrm{K}_{2} \mathrm{H}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ (Larbot et al., 1983).

Two bidentate $\left[\mathrm{H}_{2} \mathrm{P}_{2} \mathrm{O}_{7}\right]^{2-}$ anions and two water molecules form the sixfold coordination of the Mn^{2+} cation in the

Figure 1
Projection along the c axis of $\mathrm{K}_{2} \mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{P}_{2} \mathrm{O}_{7}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$. Polyhedra: yellow $\left[\mathrm{H}_{2} \mathrm{P}_{2} \mathrm{O}_{7}\right]$, rose $\left[\mathrm{MnO}_{6}\right]$; circles: large blue K , small grey H .

Received 25 March 2003
Accepted 31 March 2003
Online 9 April 2003

Figure 2
Coordination polyhedra with numbering of atoms of $\mathrm{K}^{+}, \mathrm{Mn}^{2+}$ and P^{5+} in the title compound. Displacement ellipsoids are at the 50% probability level. [Symmetry codes: (i) $\frac{1}{2}-x, 1-y, \frac{1}{2}+z$; (ii) $-x, \frac{1}{2}+y, 1-z$; (iii) $\frac{1}{2}+x, \frac{3}{2}-y, \frac{1}{2}-z$; (iv) $-x, 1-y, 1-z$; (v) $\frac{1}{2}+x, y, \frac{1}{2}-z$; (vi) $x, \frac{1}{2}-y, z$; (vii) $x, \frac{3}{2}-y, z$; (viii) $\frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{2}+z$.]
structure. The average $\mathrm{Mn}-\mathrm{O}$ distance in the distorted octahedron is $2.173(2) \AA$, a value close to that found in $\mathrm{MnHP}_{2} \mathrm{O}_{7}$ (2.027 A ; Durif \& Averbuch-Pouchot, 1982). [MnO_{6}] polyhedra are isolated, the shortest $d_{\mathrm{Mn}-\mathrm{Mn}}$ being $5.716 \AA$. The irregularity in the manganese environments in $\mathrm{K}_{2} \mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{P}_{2} \mathrm{O}_{7}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ may be attributed in part to the JahnTeller effect. In fact, in the case of an octahedral crystal field, this phenomenon has an influence on the energy levels $3 d^{4}$.

The phosphorus(V) atoms are coordinated by four O atoms in a slightly distorted tetrahedron. Of the four oxygen apices, one is a hydroxyl group. Two tetrahedra share a corner (O 4) to form the $\left[\mathrm{H}_{2} \mathrm{P}_{2} \mathrm{O}_{7}\right]^{2-}$ anion in a roughly eclipsed conformation. Average $d_{\mathrm{P}-\mathrm{O}}$ of 1.534 (2) \AA is similar to that found in $\mathrm{K}_{2} \mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{P}_{2} \mathrm{O}_{7}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ [1.537 (2) \AA; Alaoui et al., 2003] or $1.543 \AA$ in $\mathrm{K}_{3} \mathrm{H}\left(\mathrm{H}_{2} \mathrm{P}_{2} \mathrm{O}_{7}\right)_{2}$ (Dumas, 1978). The bridging angle $\mathrm{P}-\mathrm{O}-\mathrm{P}$ of $130.86(13)^{\circ}$ is close to that in $\mathrm{Ca}_{2} \mathrm{P}_{2} \mathrm{O}_{7}\left(130.0^{\circ}\right.$; Calvo, 1968) or $130.8(2)^{\circ}$ in $\mathrm{K}_{2} \mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{P}_{2} \mathrm{O}_{7}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$. We display in Fig. 2 the coordination polyhedra of K, Mn and P in the current structure.

Experimental

Stoichiometric amounts of $\mathrm{Mn}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}$ and $\mathrm{K}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$ were dissolved in distilled water. After a day of stirring at room temperature, the solution was allowed to stand for two weeks. Large prismatic, light pink crystals deposited; these were filtered off and washed with a water-ethanol solution (20:80).

Crystal data

```
\(\mathrm{H}_{8} \mathrm{~K}_{2} \mathrm{MnO}_{16} \mathrm{P}_{4}\)
\(M_{r}=521.08\)
Orthorhombic, Pnma
\(a=9.7613\) (8) \(\AA\)
\(b=11.1627\) (9) \(\AA\)
\(c=13.3949\) (11) \(\AA\)
\(V=1459.5(2) \AA^{3}\)
\(Z=4\)
\(D_{x}=2.371 \mathrm{Mg} \mathrm{m}^{-3}\)
```


Data collection

Bruker SmartApex CCD area-
detector diffractometer
ω scans
Absorption correction: multi-scan
(XPREP; Sheldrick, 1997)
$T_{\min }=0.670, T_{\max }=0.893$
14628 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.063$
$S=1.00$
1890 reflections
128 parameters

1890 independent reflections
1332 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.079$
$\theta_{\text {max }}=28.3^{\circ}$
$h=-13 \rightarrow 12$
$k=-14 \rightarrow 14$
$l=-17 \rightarrow 17$

All H -atom parameters refined
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0136 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.84 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\max }=0.84 \mathrm{e}^{2} \AA^{-3}$
$\Delta \rho_{\min }=-0.69 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters (A).

$\mathrm{Mn} 1-\mathrm{O} 1$	$2.141(2)$	$\mathrm{P} 2-\mathrm{O} 4$	$1.610(2)$
$\mathrm{Mn} 1-\mathrm{O} 7$	$2.158(2)$	$\mathrm{K} 1-\mathrm{O} 2$	$2.702(2)$
$\mathrm{Mn} 1-\mathrm{O} 1 W$	$2.192(4)$	$\mathrm{K} 1-\mathrm{O} 7^{\mathrm{i}}$	$2.845(2)$
$\mathrm{Mn} 1-\mathrm{O} 2 W$	$2.247(4)$	$\mathrm{K} 1-\mathrm{O} 2 W^{\mathrm{i}}$	$2.984(4)$
$\mathrm{P} 1-\mathrm{O} 6$	$1.485(2)$	$\mathrm{K} 1-\mathrm{O} 1^{\mathrm{ii}}$	$3.093(2)$
$\mathrm{P} 1-\mathrm{O} 7$	$1.502(2)$	$\mathrm{K} 1-\mathrm{O} 2 W^{\mathrm{iv}}$	$3.358(4)$
$\mathrm{P} 1-\mathrm{O} 5$	$1.545(2)$	$\mathrm{K} 2-\mathrm{O} 6^{\mathrm{iii}}$	$2.712(2)$
$\mathrm{P} 1-\mathrm{O} 4$	$1.596(2)$	$\mathrm{K} 2-\mathrm{O} 5$	$2.714(2)$
$\mathrm{P} 2-\mathrm{O} 3$	$1.491(2)$	$\mathrm{K} 2-\mathrm{O} 1 W^{\mathrm{ix}}$	$3.027(4)$
$\mathrm{P} 2-\mathrm{O} 1$	$1.503(2)$	$\mathrm{K} 2-\mathrm{O} 1^{\mathrm{x}}$	$3.068(2)$
$\mathrm{P} 2-\mathrm{O} 2$	$1.539(2)$		

Symmetry codes: (i) $\frac{1}{2}-x, 1-y, \frac{1}{2}+z$; (ii) $-x, \frac{1}{2}+y, 1-z$; (iii) $\frac{1}{2}+x, \frac{3}{2}-y, \frac{1}{2}-z$; (iv)
$-x, 1-y, 1-z$; (ix) $1-x, 1-y, 1-z$; (x) $1-x, \frac{1}{2}+y, 1-z$.

Table 2
Hydrogen-bonding geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	H \cdots A	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 W-\mathrm{H} 1 W \cdots \mathrm{O} 3^{\mathrm{xi}}$	0.79 (3)	2.00 (3)	2.776 (3)	169 (4)
$\mathrm{O} 2 W-\mathrm{H} 2 W \cdots{ }^{\text {7 }}{ }^{\text {xii }}$	0.79 (3)	2.16 (3)	2.833 (4)	144 (3)
$\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{O} 6^{\text {xiii }}$	0.76 (3)	1.75 (3)	2.505 (3)	172 (4)
$\mathrm{O} 5-\mathrm{H} 5 \cdots \mathrm{O}^{\text {v }}$	0.89 (3)	1.64 (3)	2.528 (3)	176 (3)

Symmetry codes: (v) $1-x, 1-y, 1-z$; (xi) $1-x, y-\frac{1}{2}, 1-z$; (xii) $x-\frac{1}{2}, \frac{1}{2}-y, \frac{1}{2}-z$; (xiii) $x-\frac{1}{2}, y, \frac{1}{2}-z$.

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ATOMS (Dowty, 1999); software used to prepare material for publication: SHELXL97.

References

Alaoui, A. T., Ouarsal, R., Lachkar, M., El Bali, B. \& Bolte, M. (2002). Acta Cryst. E58, i91-i92.
Alaoui, A. T., Ouarsal, R., Lachkar, M., Zavalij, P. Y. \& El Bali, B. (2003). Acta Cryst. E59, i50-i52.
Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Calvo, C. (1968). Inorg. Chem. 7, 1345-1351.
Dowty, E. (1999). ATOMS for Windows and Macintosh. Version 5. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, USA.
Dumas, Y. (1978). Acta Cryst. B34, 3514-3519.
Durif, A. \& Averbuch-Pouchot, M. T. (1982). Acta Cryst. B38, 2883-2885.
Larbot, A., Durant, J., Norbert, A. \& Le Cot, L. (1983). Acta Cryst. C39, 6-8.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97 and XPREP. University of Göttingen, Germany.

