inorganic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Aziz Alaoui Tahiri,^a Rachid Ouarsal,^a Mohammed Lachkar,^a Peter Y. Zavalij^b and Brahim El Bali^a*

^aDépartement de Chimie, Faculté des Sciences Dhar Mehraz, BP 1796 Atlas 30003, Fès, Morocco, and ^bInstitute for Materials Research and Department of Chemistry, State University of New York at Binghamton, NY 13902-6000, USA

Correspondence e-mail: belbali@eudoramail.com

Key indicators

Single-crystal X-ray study T = 294 K Mean σ (P–O) = 0.002 Å R factor = 0.037 wR factor = 0.063 Data-to-parameter ratio = 14.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Dipotassium manganese(II) bis(dihydrogendiphosphate) dihydrate, K₂Mn(H₂P₂O₇)₂·2H₂O

The framework of $K_2Mn(H_2P_2O_7)_2 \cdot 2H_2O$ consists of metallate layers linked by O-P-O bridges and weak hydrogen bridging bonds. Mn sites have an octahedral coordination by two bidentate $[H_2P_2O_7]^{2-}$ anions and two water molecules.

Received 25 March 2003 Accepted 31 March 2003 Online 9 April 2003

Comment

Bibliographic data on acidic metal pyrophosphates and their applications have been widely discussed in previous papers published by our research group (Alaoui *et al.*, 2002, 2003). The present work is a continuation of our investigations of the series $(A,T)_x(H_2P_2O_7)_y \cdot zH_2O$ (A = alkali metal and T = transition metal). We report here the synthesis and crystal structure of K₂Mn(H₂P₂O₇)₂·2H₂O.

In the structure of the title compound, potassium polyhedra share an edge to form dimers $[K_2O_{13}]$. These latter are linked by $Mn \cdots O$ interactions as they share a face with $[MnO_6]$. This results in a metallate layer, parallel to (010). Two such layers are linked by O-P-O bridges from $[H_2P_2O_7]$ moieties stacked in a parallel phosphate layer by weak bridging hydrogen bonds. Fig. 1 represents a perspective view of the structure.

Potassium occupies two kind of sites in the structure, one with seven- and the other with eightfold coordination. Average $K \cdots O$ distances in $[K1O_8]$ and $[K2O_7]$ are 2.953 (2) and 2.859 (2) Å, respectively. These values can be compared to 2.959 Å in $K_2Zn(H_2P_2O_7)_2$ ·2H₂O (Alaoui *et al.*, 2003) or 2.908 Å in $K_2H_2P_2O_7$ (Larbot *et al.*, 1983).

Two bidentate $[H_2P_2O_7]^{2-}$ anions and two water molecules form the sixfold coordination of the Mn^{2+} cation in the

© 2003 International Union of Crystallography Printed in Great Britain – all rights reserved Projection along the *c* axis of $K_2Mn(H_2P_2O_7)_2 \cdot 2H_2O$. Polyhedra: yellow $[H_2P_2O_7]$, rose $[MnO_6]$; circles: large blue K, small grey H.

Figure 2

Coordination polyhedra with numbering of atoms of K⁺, Mn²⁺ and P⁵⁺ in the title compound. Displacement ellipsoids are at the 50% probability level. [Symmetry codes: (i) $\frac{1}{2} - x$, 1 - y, $\frac{1}{2} + z$; (ii) -x, $\frac{1}{2} + y$, 1 - z; (iii) $\frac{1}{2} + x, \frac{3}{2} - y, \frac{1}{2} - z; \text{ (iv) } -x, 1 - y, 1 - z; \text{ (v) } \frac{1}{2} + x, y, \frac{1}{2} - z; \text{ (vi) } x, \frac{1}{2} - y, z;$ (vii) $x, \frac{3}{2} - y, z$; (viii) $\frac{1}{2} - x, \frac{1}{2} + y, \frac{1}{2} + z$.]

structure. The average Mn-O distance in the distorted octahedron is 2.173 (2) Å, a value close to that found in MnHP₂O₇ (2.027 Å; Durif & Averbuch-Pouchot, 1982). $[MnO_6]$ polyhedra are isolated, the shortest d_{Mn-Mn} being 5.716 Å. The irregularity in the manganese environments in $K_2Mn(H_2P_2O_7)_2 \cdot 2H_2O$ may be attributed in part to the Jahn-Teller effect. In fact, in the case of an octahedral crystal field, this phenomenon has an influence on the energy levels $3d^4$.

The phosphorus(V) atoms are coordinated by four O atoms in a slightly distorted tetrahedron. Of the four oxygen apices, one is a hydroxyl group. Two tetrahedra share a corner (O4) to form the $[H_2P_2O_7]^{2-}$ anion in a roughly eclipsed conformation. Average d_{P-Q} of 1.534 (2) Å is similar to that found in $K_2Zn(H_2P_2O_7)_2 \cdot 2H_2O$ [1.537 (2) Å; Alaoui *et al.*, 2003] or 1.543 Å in $K_3H(H_2P_2O_7)_2$ (Dumas, 1978). The bridging angle P-O-P of 130.86 (13)° is close to that in $Ca_2P_2O_7$ (130.0°; Calvo, 1968) or 130.8 (2)° in $K_2Zn(H_2P_2O_7)_2 \cdot 2H_2O$. We display in Fig. 2 the coordination polyhedra of K, Mn and P in the current structure.

Experimental

Stoichiometric amounts of Mn(CH₃COO)₂ and K₄P₂O₇ were dissolved in distilled water. After a day of stirring at room temperature, the solution was allowed to stand for two weeks. Large prismatic, light pink crystals deposited; these were filtered off and washed with a water-ethanol solution (20:80).

Crystal data

 $H_8K_2MnO_{16}P_4$ $M_r = 521.08$ Orthorhombic, Pnma a = 9.7613 (8) Å b = 11.1627 (9) Åc = 13.3949 (11) Å $V = 1459.5 (2) \text{ Å}^3$ Z = 4 $D_x = 2.371 \text{ Mg m}^{-3}$

Mo $K\alpha$ radiation Cell parameters from 3757 reflections $\theta = 2.4 - 30.8^{\circ}$ $\mu = 2.00 \text{ mm}^{-1}$ T = 294 (2) KNeedle, light pink $0.23 \times 0.11 \times 0.08 \text{ mm}$

Data collection

a

1890 independent reflections 1332 reflections with $I > 2\sigma(I)$ $R_{int} = 0.079$ $\theta_{max} = 28.3^{\circ}$ $h = -13 \rightarrow 12$ $k = -14 \rightarrow 14$
$l = -17 \rightarrow 17$
All H-atom parameters refined
$w = 1/[\sigma^2(F_o^2) + (0.0136P)^2]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} < 0.001$
$\Delta \rho_{\rm max} = 0.84 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.69 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Selected geometric parameters (Å).

2141(2)		
2.141 (Z)	P2-O4	1.610 (2)
2.158 (2)	K1-O2	2.702 (2)
2.192 (4)	$K1 - O7^{i}$	2.845 (2)
2.247 (4)	$K1 - O2W^{i}$	2.984 (4)
1.485 (2)	K1-O1 ⁱⁱ	3.093 (2)
1.502 (2)	$K1 - O2W^{iv}$	3.358 (4)
1.545 (2)	K2-O6 ⁱⁱⁱ	2.712 (2)
1.596 (2)	K2-O5	2.714 (2)
1.491 (2)	$K2 - O1W^{ix}$	3.027 (4)
1.503 (2)	K2-O1 ^x	3.068 (2)
1.539 (2)		
	2.141 (2) 2.158 (2) 2.192 (4) 2.247 (4) 1.485 (2) 1.502 (2) 1.545 (2) 1.596 (2) 1.503 (2) 1.539 (2)	2.147 (2) $12 - 04$ 2.158 (2) $K1 - 02$ 2.192 (4) $K1 - 02$ 2.247 (4) $K1 - 02W^{i}$ 1.485 (2) $K1 - 01^{ii}$ 1.502 (2) $K1 - 02W^{iv}$ 1.545 (2) $K2 - 06^{iii}$ 1.596 (2) $K2 - 05$ 1.491 (2) $K2 - 01W^{ix}$ 1.503 (2) $K2 - 01^{x}$

Symmetry codes: (i) $\frac{1}{2} - x$, 1 - y, $\frac{1}{2} + z$; (ii) -x, $\frac{1}{2} + y$, 1 - z; (iii) $\frac{1}{2} + x$, $\frac{3}{2} - y$, $\frac{1}{2} - z$; (iv) -x, 1-y, 1-z; (ix) 1-x, 1-y, 1-z; (x) $1-x, \frac{1}{2}+y, 1-z.$

Table 2 Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O1W−H1W···O3 ^{xi}	0.79 (3)	2.00 (3)	2.776 (3)	169 (4)
O2W−H2W···O7 ^{xii}	0.79 (3)	2.16 (3)	2.833 (4)	144 (3)
O2−H2···O6 ^{xiii}	0.76 (3)	1.75 (3)	2.505 (3)	172 (4)
$O5-H5\cdots O3^{v}$	0.89 (3)	1.64 (3)	2.528 (3)	176 (3)
S	1 1	()) 1	1.4 ('')	1.1 1

Symmetry codes: (v) 1 - x, 1 - y, 1 - z; (xi) 1 - x, $y - \frac{1}{2}$, 1 - z; (xii) $x - \frac{1}{2}$, $\frac{1}{2} - y$, $\frac{1}{2} - z$; (xiii) $x - \frac{1}{2}, y, \frac{1}{2} - z$.

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ATOMS (Dowty, 1999); software used to prepare material for publication: SHELXL97.

References

- Alaoui, A. T., Ouarsal, R., Lachkar, M., El Bali, B. & Bolte, M. (2002). Acta Cryst. E58, i91-i92.
- Alaoui, A. T., Ouarsal, R., Lachkar, M., Zavalij, P. Y. & El Bali, B. (2003). Acta Cryst. E59, i50-i52.
- Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Calvo, C. (1968). Inorg. Chem. 7, 1345-1351.

Dowty, E. (1999). ATOMS for Windows and Macintosh. Version 5. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, USA.

- Dumas, Y. (1978). Acta Cryst. B34, 3514–3519.
- Durif, A. & Averbuch-Pouchot, M. T. (1982). Acta Cryst. B38, 2883-2885.
- Larbot, A., Durant, J., Norbert, A. & Le Cot, L. (1983). Acta Cryst. C39, 6-8. Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1997). SHELXL97 and XPREP. University of Göttingen, Germany.